Metadata
eLife Assessment
This manuscript offers a modeling platform in which horizontal gene transfer (HGT) is incorporated into the ecological dynamics of microbial communities. The investigation is valuable as it brings to the forefront a potentially significant process and highlights its implications. However, the investigation in its current form is incomplete because it is based on a narrow range of parameters and assumptions. As a result, the scope and relevance of the findings are not fully clear. A more in-depth description of model assumptions and the formulation structure and a more thorough analysis of the impact of different parameters would strengthen the manuscript. This work will be of interest to microbiologists as well as researchers in ecological and evolutionary biology.
Reviewer #1 (Public review):
Summary:
The authors present a modelling study to test the hypothesis that horizontal gene transfer (HGT) can modulate the outcome of interspecies competition in microbiomes, and in particular promote bistability in systems across scales. The premise is a model developed by the same authors in a previous paper where bistability happens because of a balance between growth rates and competition for a mutual resource pool (common carrying capacity). They show that introducing a transferrable element that gives a "growth rate bonus" expands the region of parameter space where bistability happens. The authors then investigate how often (in terms of parameter space) this bistability occurs across different scales of complexity, and finally under selection for the mobile element (framed as ABR selection).
Strengths:
The authors tackle an important, yet complex, question: how do different evolutionary processes impact the ecology of microbial ecosystems? They do a nice job at increasing the scales of heterogeneity and asking how these impact their main observable: bistability.
Weaknesses:
The author's starting point is their interaction LV model and the manuscript then explores how this model behaves under different scenarios. Because the structure of the model and the underlying assumptions essentially dictate these outcomes, I would expect to see much more focus on how these two aspects relate to the specific scenarios that are discussed. For example:
A key assumption is that the mobile element conveys a multiplicative growth rate benefit (1+lambda). However, the competition between the species is modelled as a factor gamma that modulates the competition for overall resource and thus appears in the saturation term (1+ S1/Nm + gamma2*S2/Nm). This means that gamma changes the perceived abundance of the other species (if gamma > 1, then from the point of view of S1 it looks like there are more S2 than there really are). Most importantly, the relationship between these parameters dictates whether or not there will be bistability (as the authors state).
This decoupling between the transferred benefit and the competition can have different consequences. One of them is that - from the point of view of the mobile element - the mobile element competes at different strengths within the same population compared to between. To what degree introducing such a mobile element modifies the baseline bistability expectation thus strongly depends on how it modifies gamma and lambda.
Thus, this structural aspect needs to be much more carefully presented to help the reader follow how much of the results are just trivial given the model assumptions and which have more of an emergent flavour. From my point of view, this has an important impact on helping the reader understand how the model that the authors present can contribute to the understanding of the question "how microbes competing for a limited number of resources stably coexist". I do appreciate that this changes the focus of the manuscript from a presentation of simulation results to more of a discussion of mathematical modelling.
Reviewer #2 (Public review):
Summary:
In this work, the authors use a theoretical model to study the potential impact of Horizontal Gene Transfer on the number of alternative stable states of microbial communities. For this, they use a modified version of the competitive Lotka Volterra model-which accounts for the effects of pairwise, competitive interactions on species growth-that incorporates terms for the effects of both an added death (dilution) rate acting on all species and the rates of horizontal transfer of mobile genetic elements-which can in turn affect species growth rates. The authors analyze the impact of horizontal gene transfer in different scenarios: bistability between pairs of species, multistability in communities, and a modular structure in the interaction matrix to simulate multiple niches. They also incorporate additional elements to the model, such as spatial structure to simulate metacommunities and modification of pairwise interactions by mobile genetic elements. In almost all these cases, the authors report an increase in either the number of alternative stable states or the parameter region (e.g. growth rate values) in which they occur.
In my opinion, understanding the role of horizontal gene transfer in community multistability is a very important subject. This manuscript is a useful approach to the subject, but I'm afraid that a thorough analysis of the role of different parameters under different scenarios is missing in order to support the general claims of the authors. The authors have extended their analysis to increase their biological relevance, but I believe that the analysis still lacks comprehensiveness.
Understanding the origin of alternative stable states in microbial communities and how often they may occur is an important challenge in microbial ecology and evolution. Shifts between these alternative stable states can drive transitions between e.g. a healthy microbiome and dysbiosis. A better understanding of how horizontal gene transfer can drive multistability could help predict alternative stable states in microbial communities, as well as inspire novel treatments to steer communities towards the most desired (e.g. healthy) stable states.
Strengths:
(1) Generality of the model: the work is based on a phenomenological model that has been extensively used to predict the dynamics of ecological communities in many different scenarios.
(2) The question of how horizontal gene transfer can drive alternative stable states in microbial communities is important and there are very few studies addressing it.
Weaknesses:
(1) There is a need for a more comprehensive analysis of the relative importance of the different model parameters in driving multistability. For example, there is no analysis of the effects of the added death rate in multistability. This parameter has been shown to determine whether a given pair of interacting species exhibits bistability or not (see e.g. Abreu et al 2019 Nature Communications 10:2120). Similarly, each scenario is analyzed for a unique value of species interspecies interaction strength-with the exception of the case for mobile genetic elements affecting interaction strength, which considers three specific values. Considering heterogeneous interaction strengths (e.g. sampling from a random distribution) could also lead to more realistic scenarios - the authors generally considered that all species pairs interact with the same strength. Analyzing a larger range of growth rates effects of mobile genetic elements would also help generalize the results. In order to achieve a more generic assessment of the impact of horizontal gene transfer in driving multistability, its role should be systematically compared to the effects of the rest of the parameters of the model.
(2) The authors previously developed this theoretical model to study the impact of horizontal gene transfer on species coexistence. In this sense, it seems that the authors are exploring a different (stronger interspecies competition) range of parameter values of the same model, which could potentially limit novelty and generality.
(3) The authors analyze several scenarios that, in my opinion, naturally follow from the results and parameter value choices in the first sections, making their analysis not very informative. For example, after showing that horizontal gene transfer can increase multistability both between pairs of species and in a community context, the way they model different niches does not bring significantly new results. Given that the authors showed previously in the manuscript that horizontal gene transfer can impact multistability in a community in which all species interact with each other, one might expect that it will also impact multistability in a larger community made of (sub)communities that are independent of (not interacting with) each-which is the proposed way for modelling niches. A similar argument can be made regarding the analysis of (spatially structured) metacommunities. It is known that, for smaller enough dispersal rates, space can promote regional diversity by enabling each local community to remain in a different stable state. Therefore, in conditions in which the impact of horizontal gene transfer drives multistability, it will also drive regional diversity in a metacommunity.
(4) In some cases, the authors consider that mobile genetic elements can lead to ~50% growth rate differences. In the presence of an added death rate, this can be a relatively strong advantage that makes the fastest grower easily take over their competitors. It would be important to discuss biologically relevant examples in which such growth advantages driven by mobile genetic elements could be expected, and how common such scenarios might be.
Reviewer #3 (Public review):
Hong et al. used a model they previously developed to study the impact of horizontal gene transfer (HGT) on microbial multispecies communities. They investigated the effect of HGT on the existence of alternative stable states in a community. The model most closely resembles HGT through the conjugation of incompatible plasmids, where the transferred genes confer independent growth-related fitness effects. For this type of HGT, the authors find that increasing the rate of HGT leads to an increasing number of stable states. This effect of HGT persists when the model is extended to include multiple competitive niches (under a shared carrying capacity) or spatially distinct patches (that interact in a grid-like fashion). Instead, if the mobile gene is assumed to reduce between-species competition, increasing HGT leads to a smaller region of multistability and fewer stable states. Similarly, if the mobile gene is deleterious an increase in HGT reduces the parameter region that supports multistability.
This is an interesting and important topic, and I welcome the authors' efforts to explore these topics with mathematical modeling. The manuscript is well written and the analyses seem appropriate and well-carried out. However, I believe the model is not as general as the authors imply and more discussion of the assumptions would be helpful (both to readers + to promote future theoretical work on this topic). Also, given the model, it is not clear that the conclusions hold quite so generally as the authors claim and for biologically relevant parameters. To address this, I would recommend adding sensitivity analyses to the manuscript.
Specific points
(1) The model makes strong assumptions about the biology of HGT, that are not adequately spelled out in the main text or methods, and will not generally prove true in all biological systems. These include:
a) The process of HGT can be described by mass action kinetics. This is a common assumption for plasmid conjugation, but for phage transduction and natural transformation, people use other models (e.g. with free phage that adsorp to all populations and transfer in bursts).
b) A subpopulation will not acquire more than one mobile gene, subpopulations can not transfer multiple genes at a time, and populations do not lose their own mobilizable genes. [this may introduce bias, see below].
c) The species internal inhibition is independent of the acquired MGE (i.e. for p1 the self-inhibition is by s1).
These points are in addition to the assumptions explored in the supplementary materials, regarding epistasis, the independence of interspecies competition from the mobile genes, etc. I would appreciate it if the authors could be more explicit in the main text about the range of applicability of their model, and in the methods about the assumptions that are made.
(2) I am not surprised that a mechanism that creates diversity will lead to more alternative stable states. Specifically, the null model for the absence of HGT is to set gamma to zero, resulting in pij=0 for all subpopulations (line 454). This means that a model with N^2 classes is effectively reduced to N classes. It seems intuitive that an LV-model with many more species would also allow for more alternative stable states. For a fair comparison, one would really want to initialize these subpopulations in the model (with the same growth rates - e.g. mu1(1+lambda2)) but without gene mobility.
(3) I am worried that the absence of double gene acquisitions from the model may unintentionally promote bistability. This assumption is equivalent to an implicit assumption of incompatibility between the genes transferred from different species. A highly abundant species with high HGT rates could fill up the "MGE niche" in a species before any other species have reached appreciable size. This would lead to greater importance of initial conditions and could thus lead to increased multistability.
This concern also feels reminiscent of the "coexistence for free" literature (first described here http://dx.doi.org/10.1016/j.epidem.2008.07.001 ) which was recently discussed in the context of plasmid conjugation models in the supplementary material (section 3) of https://doi.org/10.1098/rstb.2020.0478 .
(4) The parameter values tested seem to focus on very large effects, which are unlikely to occur commonly in nature. If I understand the parameters in Figure 1b correctly for instance, lambda2 leads to a 60% increase in growth rate. Such huge effects of mobile genes (here also assumed independent from genetic background) seem unlikely except for rare cases. To make this figure easier to interpret and relate to real-world systems, it could be worthwhile to plot the axes in terms of the assumed cost/benefit of the mobile genes of each species.
Something similar holds for the HGT rate (eta): given that the population of E. coli or Klebsiella in the gut is probably closer to 10^9 than 10^12 (they make up only a fraction of all cells in the gut), the assumed rates for eta are definitely at the high end of measured plasmid transfer rates (e.g. F plasmid transfers at a rate of 10^-9 mL/CFU h-1, but it is derepressed and considered among the fastest - https://doi.org/10.1016/j.plasmid.2020.102489 ). To adequately assess the impact of the HGT rate on microbial community stability it would need to be scanned on a log (rather than a linear) scale. Considering the meta-analysis by Sheppard et al. it would make sense to scan it from 10^-7 to 1 for a community with a carrying capacity around 10^9.
(5) It is not clear how sensitive the results (e.g. Figure 2a on the effect of HGT) are to the assumption of the fitness effect distribution of the mobile genes. This is related to the previous point that these fitness effects seem quite large. I think some sensitivity analysis of the results to the other parameters of the simulation (also the assumed interspecies competition varies from figure to figure) would be helpful to put the results into perspective and relate them to real biological systems.